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Abstract Hölder continuity and uniqueness of the solutions of general multivalued
vector quasiequilibrium problems in metric spaces are established. The results are shown
to be extensions of recent ones for equilibrium problems with some improvements. Applica-
tions in quasivariational inequalities, vector quasioptimization and traffic network problems
are provided as examples for others in various optimization—related problems.
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1 Introduction

The equilibrium problem, introduced by Blum and Oettli (1994) as a direct generalization
of variational inequalities and optimization problems, has been proved to include many opti-
mization—related problems. However, it does not contain quasivariational inequalities. The
origin of the latter is the paper of Bensoussan et al. (1973) considering random impulse control
problems and showing the need to deal with constraint sets depending on the state variables.
A natural extension of the equilibrium problem to include quasivariational inequalities is the
quasiequilibrium problem, which contains also various quasioptimization—related problems.
Up to now there have been a great deal of works devoted to all aspects of quasiequilibrium
problems like the solution existence, the sensitivity analysis and stability, solving methods,
the solution uniqueness, etc. For the sensitivity analysis and stability we observe Bianchi and
Pini (2003), Anh and Khanh (2004, 2007b, in press), which are devoted to semicontinuity
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of solution sets, and Ait Mansour and Riahi (2005), Anh and Khanh (2006, 2007a) which
investigate the Hölder continuity of the unique solution of equilibrium problems.

The aim of the present paper is to extend Ait Mansour and Riahi (2005) and Anh and
Khanh (2006, 2007a) to the case of general quasiequilibrium problems. When applying to
quasivariational inequalities in reflexive Banach spaces our result sharpens that of Ait Man-
sour and Scrimali (online). Since the solution existence has been intensively studied, (see e.g.,
recent papers Giannessi 2000; Goh and Yang 1999; Hai and Khanh 2006, 2007a,b; Khaliq
2005 and references therein), we focalize our consideration on sensitivity analysis assuming
always that the solutions exist in a neighborhood of the reference point.

The outline of the remainder of the paper is as follows. The rest of this section is devoted
to explaining notions needed in the sequel. The main result is established in Sect. 2 followed
by several direct sequences. In Sect. 3 we discuss applications of the main result.

Our notations are almost standard. We use ‖ · ‖ and d(., .) for the norm and metric in
any normed space and metric space, respectively, (the context makes it clear what space is
encountered). d(x, A) is the distance from x to subset A in X . For a normed space X, X∗ is
the topological dual and 〈., .〉 is the canonical pair. R+ is the set of nonnegative real numbers.
B(x, r) denotes the closed ball of radius r ≥ 0 and centered at x in a metric space X . intC
stands for the interior of a subset C .

Throughout the paper if not stated otherwise, let X , Z , Λ, M and N be metric spaces,
Y be a metric linear space, A ⊆ X be a nonempty subset and C ⊆ Y have int C �= ∅.
Let K : A × Λ → 2X be a multifunction with nonempty values, a : A × N → 2Z and
F : X × X × Z × M → 2Y be multifunctions. For subsets A and B under consideration we
adopt the notations

r1(A, B) means A ∩ B �= ∅;
r2(A, B) means A ⊆ B;
ϕ1(A) = ((−A)\l(A))c ;
ϕ2(A) = (−intA)c,

where l(A) = A ∩ (−A) and (.)c is the complement of (.). For each r∈ {r1, r2}, ϕ ∈
{ϕ1, ϕ2}, λ ∈ Λ, µ ∈ M and η ∈ N consider the following quasiequilibrium problem:

(Prϕ) Find x̄ ∈ K (x̄, λ) and x̄∗ ∈ a(x̄, η) such that, for each y ∈ K (x̄, λ),

r
(
F(x̄, y, x̄∗, µ), ϕ(C)

)
.

Let Srϕ(λ, µ, η) be the solution set of (Prϕ) corresponding to λ,µ and η. Note that this
problem statement is not quite explicit. However, it helps to unify the statements and proofs
of assertions for four problems, (Prϕ) represents for each (λ, µ, η).

The following Hölder-related notions are in use in the sequel.

Definition 1.1 (i) (Classical) A multifunction G : X ×Λ → 2X is said to be (l1.α1, l2.α2)

−Hölder at (x0, λ0) if there exist neighborhoods N of x0 and U of λ0 such that,
∀x1, x2 ∈ N ,∀λ1, λ2 ∈ U ,

G(x1, λ1) ⊆ {
x ∈ X | ∃z ∈ G(x2, λ2), d(x, z) ≤ l1dα1(x1, x2) + l2dα2(λ1, λ2)

}
.

(ii) Let G : X × X× → 2Y and a : X → 2Z is called h.β-ri .ϕ2-Hölder-strongly pseudo-
monotone relative to a in S ⊆ X , i = 1, 2, if ∀x, y ∈ S : x �= y,

[∃x∗ ∈ a(x), ri (G(x, y, x∗), ϕ2(C))]
�⇒ [∃y∗ ∈ a(y), G(y, x, y∗) + h B

(
0, dβ(x, y)

) ⊆ −C], (1)
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where h ≥ 0 and β > 0. G is called h.β-ri .ϕ1-Hölder-strongly pseudomonotone
relative to a if (1) is replaced by

[∃x∗ ∈ a(x), ri (G(x, y, x∗), ϕ1(C))]
�⇒ [∃y∗ ∈ a(y), G(y, x, y∗) + h B

(
0, dβ(x, y)

) ⊆ −C\l(C)].
(iii) G is called riϕk- quasimonotone relative to a in K ⊆ X , for each i = 1, 2 and k = 1, 2,

if ∀x, y ∈ K : x �= y,

∀x∗ ∈ a(x), r̄i
(
G(x, y, x∗) , ϕk(C)

) �⇒ [∃y∗ ∈ a(y), ri
(
G(y, x, y∗) , ϕk(C))].

G is called h.β-r1.ϕ2-Hölder-strongly monotone relative to a in K ⊆ X if, ∀x, y ∈ K :
x �= y, ∃x∗ ∈ a(x), ∃y∗ ∈ a(y),

G(x, y, x∗) + G(y, x, y∗) + hdβ(x, y) ⊆ −C.

G is called h.β-r2.ϕ2-Hölder-strongly monotone relative to a in K ⊆ X if, ∀x, y ∈ K :
x �= y, ∀x∗ ∈ a(x),∀y∗ ∈ a(y),

G(x, y, x∗) + G(y, x, y∗) + hdβ(x, y) ⊆ −C.

G is called h.β-r1.ϕ1-Hölder-strongly monotone relative to a in K ⊆ X if, ∀x, y ∈ K :
x �= y, ∃x∗ ∈ a(x), ∃y∗ ∈ a(y),

G(x, y, x∗) + G(y, x, y∗) + hdβ(x, y) ⊆ −C\l(C).

G is called h.β-r2.ϕ1-Hölder-strongly monotone relative to a in K ⊆ X if, ∀x,

y ∈ K : x �= y, ∀x∗ ∈ a(x),∀y∗ ∈ a(y),

G(x, y, x∗) + G(y, x, y∗) + hdβ(x, y) ⊆ −C\l(C).

In special case where X = Y = R, C = R+ and f : R × R → R, a(x) ≡ {x}, the above
monotone properties reduce the following corresponding classical monotone properties.

Definition 1.2 Let f : X × X → R.

(i) f is called h.β-Hölder-strongly pseudomonotone in K ⊆ X if, ∀x, y ∈ K : x �= y,

[ f (x, y) ≥ 0] �⇒ [ f (y, x) + h B
(
0, dβ(x, y)

) ≤ 0],
where h ≥ 0 and β > 0.

(ii) f is called quasimonotone in K ⊆ X if, ∀x, y ∈ K : x �= y,

[ f (x, y) < 0] �⇒ [ f (y, x) ≥ 0].
f is called h.β-Hölder-strongly monotone in K ⊆ X if, ∀x, y ∈ K : x �= y,

f (x, y) + f (y, x) + hdβ(x, y) ≤ 0.

It is easy to see that if f is h.β-Hölder-strongly monotone in K ⊆ X , then f is h.β-
Hölder-strongly pseudomonotone in K ⊆ X .

Example 1.1 Let f : R × R → R, f (x, y) = y(x − y). Then it is not hard to that f is 1
2 .2-

Hölder-strongly monotone in R and hence f is also 1
2 .2-Hölder-strongly pseudomonotone

in R.
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Example 1.2 Let f : [0, 1] × [0, 1] → R, f (x, y) = y−x
1+x . Then it is easy to that f is 1

2 .

1-Hölder-strongly pseudomonotone in [0, 1]. But f is not Hölder-strongly monotone in [0, 1],
since f (x, y) + f (y, x) = (y−x)2

(1+x)(1+y)
≥ 0.

The following Hölder-related assumptions (cf. Anh and Khanh 2007a) will be essential
for considering problem (Prϕ).

For the reference point (λ0, µ0, η0) ∈ Λ×M ×N , there are neighborhoods U (λ0), V (µ0)

and W (η0) of λ0, µ0 and η0, respectively, such that

(A1) ∀λ ∈ U (λ0), ∀µ1, µ2 ∈ V (µ0), ∀x, y ∈ E(λ) := {x ∈ A | x ∈ K (x, λ)} :
x �= y, ∀x∗

1 , x∗
2 ∈ a (E(λ), W (η0)),

F(x, y, x∗
1 , µ1) ⊆ F(x, y, x∗

2 , µ2) + B
(
0, dθ (x, y)

(
n3dδ3(x∗

1 , x∗
2 ) + n4dδ4(µ1, µ2)

))
,

where n3, n4, δ3, δ4 and θ are nonnegative real numbers.

(A2r1ϕ) ∀µ ∈ V (µ0), ∀η ∈ W (η0), ∀x, y ∈ E (U (λ0)) : x �= y,

hdβ(x, y) ≤ inf
x∗∈a(x,η)

inf
g∈F(x,y,x∗,µ)

d(g, ϕ(C))

+ inf
y∗∈a(y,η)

inf
f ∈F(y,x,y∗,µ)

d( f, ϕ(C)), (2)

where h > 0, β > θ .

(A2r2ϕ) is (A2r1ϕ) with (2) replaced by

hdβ(x, y)≤ inf
x∗∈a(x,η)

sup
g∈F(x,y,x∗,µ)

d(g, ϕ(C))+ inf
y∗∈a(y,η)

sup
f ∈F(y,x,y∗,µ)

d( f, ϕ(C)).

Remark 1.1 These assumptions look seemingly complicated. But they are not hard to be
checked as shown by examples below. We now make their meanings clearer.

(i) Assumption (A1) incorporates Hölder continuity with respect to state variables x, y
and to parameter µ (in connection also with parameters λ and η). As explained in Anh
and Khanh (2007a), this condition replaces particular orthogonality and linearity of
variational inequalities in Hilbert spaces to ensure the Hölder continuity of the solution
(see Theorem 2.1).

(ii) When ϕ = ϕ2, assumptions (A2rϕ2) become assumptions (A2a) and (A2b) in Anh and
Khanh (2007a).

(iii) To explain Assumption (A2rϕ) we consider a single-valued real function (without
parameters) f : X × X → R for the sake of simplicity. Then the four assumptions
(A2rϕ) collapse to the following assumption: ∀x, y ∈ K ⊆ X : x �= y,

hdβ(x, y) ≤ d( f (x, y), R+) + d( f (y, x), R+). (3)

We have the following relation.

Proposition 1.1 (Anh and Khanh (2007a), Proposition 1.1).

(i) If f : X × X → R satisfies (3) then f is h.β-Hölder-strongly pseudomonotone in
K (the two types defined in Definition 1.1 (ii) coincide in this case). Conversely, if
f is h.β-Hölder-strongly pseudomonotone in K and quasimonotone in K , then f
satisfies (3).
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(ii) If f : X × X → R is h.β-Hölder-strongly monotone in K ⊆ X, then f satisfies (3).

Examples 1.1 and 1.2 in Anh and Khanh (2007a) interpret the lacking implications in
Proposition 1.1.

In the general case we have the following relation.

Proposition 1.2 (i) If F satisfies condition (A2rϕ) then F(., ., ., µ) is h.β-r.ϕ-Hölder-
strongly pseudomonotone relative to a(., η) in E(U (λ0)) for each µ ∈ V (µ0) and
η ∈ W (η0). Conversely, if F(., ., ., µ) is h.β−r.ϕ-Hölder-strongly pseudomonotone
relative to a(., η) in E(U (λ0)) and quasimonotone relative to a(., η) in E(U (λ0)) for
each µ ∈ V (µ0) and η ∈ W (η0), then assumption (A2rϕ) is satisfied.

(ii) If F is h.β-r.ϕ-Hölder-strongly monotone relative to a(., η) in E(U (λ0)) for each
µ ∈ V (µ0) and η ∈ W (η0), then assumption (A2rϕ) is fulfilled.

Proof Since r ∈ {r1, r2} and ϕ ∈ {ϕ1, ϕ2}, we have in fact four cases corresponding to four
different combinations of values of r and ϕ. However, the proof techniques are similar. We
consider only the case where r = r1 and ϕ = ϕ2.

(i) If F satisfies assumption (A2rϕ) and F(x, y, x∗, µ)∩ (Y\− intC) �= ∅, for some x∗ ∈
a(x, η), where µ ∈ V (µ0) and η ∈ W (η0). We show that F(y, x, y∗, µ)+h B(0, dβ(x, y)) ⊆
−C , for some y∗ ∈ a(y, η). In this case, we see that inf x∗∈a(x,η) infg∈F(x,y,x∗,µ)

d(g, Y\− intC) = 0 and hence assumption (A2rϕ) yields that inf y∗∈a(y,η) inf f ∈F(y,x,y∗,µ)

d( f, Y\− intC) ≥ hdβ(x, y). Therefore, F(y, x, y∗, µ) + h B(0, dβ(x, y)) ⊆ −C , for
some y∗ ∈ a(y, η). Conversely, if F is h.β-r1.ϕ2-Hölder-strongly pseudomonotone and
r1.ϕ2-quasimonotone in E(U (λ0)). We show that assumption (A2r1ϕ2) is fulfilled. Indeed,
for µ ∈ V (µ0), η ∈ W (η0), if there is x∗ ∈ a(x, η) such that F(x, y, x∗, µ)∩ (Y\− intC) �=
∅, since the h.β-r1.ϕ2-Hölder-strongly pseudomonotone of F we have F(y, x, y∗, µ) +
h B(0, dβ(x, y)) ⊆ −C , for some y∗ ∈ a(y, η) and hence

inf
y∗∈a(y,η)

inf
f ∈F(y,x,y∗,µ)

d( f, Y\− intC) ≥ hdβ(x, y),

i.e., assumption (A2r1ϕ2) is fulfilled. If ∀x∗ ∈ a(x, η), F(x, y, x∗, µ) ∩ (Y\− intC) = ∅,
by the quasimonotone relative to a(., η) of F(., ., ., µ) we see that ∃y∗ ∈ a(y, η) such that
F(y, x, y∗, µ) ∩ (Y\− intC) �= ∅, the further arguments are the same as above.

(ii) F is h.β-r1.ϕ2-Hölder-strongly monotone relative to a(., η) in E(U (λ0)) for each
µ ∈ V (µ0) and η ∈ W (η0), there are x∗ ∈ a(x, η) and y∗ ∈ a(y, η) such that

F(x, y, x∗, µ) + F(y, x, y∗, µ) + h B(0, dβ(x, y)) ⊆ −C.

Therefore, for each f ∈ F(y, x, y∗, µ) and g ∈ F(x, y, x∗, µ) one has

d(g, Y\− intC) + d( f, Y\− intC) ≥ d(g + f, Y\− intC) ≥ hdβ(x, y),

and hence assumption (A2r1ϕ2) is fulfilled.

Examples 1.1 and 1.2 in Anh and Khanh (2007a) interpret the lacking implications in
Proposition 1.2.

In this paper we use the following notation, for C, D ⊆ X ,

ρ(C, D) = sup
x∈C,y∈D

d(x, y).
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2 The main result

Theorem 2.1 For problem (Prϕ) assume that solutions exist in a neighborhood of the
considered point (λ0, µ0, η0) ∈ Λ × M × N and the assumptions (A1) and (A2rϕ) are
satisfied. Assume further that

(i) K (., .) is (l1.α1, l2.α2)−Hölder in E(U (λ0)) × {λ0};
(ii) ∀(λ, µ, η) ∈ U (λ0) × V (µ0) × W (η0), ∀x ∈ E(λ), ∀x∗ ∈ a(x, η), F(x, ., x∗, µ) is

n2.δ2−Hölder in K (U (λ0), λ);
(iii) ∀x ∈ E(U (λ0)), a(x, .) is m.γ−Hölder at η0;
(iv) α1δ2 = β, h > 2n2lδ2

1 , β > θ .

Then, the solution x(λ, µ, η) of (Prϕ) is unique in a neighborhood of (λ0, µ0, η0) and satisfies
the following condition

d(x(λ1, µ1, η1), x(λ2, µ2, η2)) ≤ k1dα2δ2/β(λ1, λ2) + k2dδ4/(β−θ)(µ1, µ2)

+ k3dγ δ3/(β−θ)(η1, η2),

where k1, k2 and k3 are positive constants depending on h, β, n2, n3, n4, θ, l1, l2, ...

Proof Since r ∈ {r1, r2} and ϕ ∈ {ϕ1, ϕ2}, we have in fact four cases corresponding to four
different combinations of values of r and ϕ. However, the proof techniques are similar. We
consider only the case where r = r1 and ϕ = ϕ2. Let λ1, λ2 ∈ U (λ0), µ1, µ2 ∈ V (µ0) and
η1, η2 ∈ W (η0).

Step 1 We prove that, ∀x(λ1, µ1, η1) ∈ Sr1ϕ2(λ1, µ1, η1), ∀x(λ1, µ2, η1) ∈ Sr1ϕ2(λ1, µ2,

η1),

d1 := d(x(λ1, µ1, η1), x(λ1, µ2, η1)) ≤
(

n4

h − 2n2lδ2
1

)1/(β−θ)

dδ4/(β−θ)(µ1, µ2).

Let x(λ1, µ1, η1) �= x(λ1, µ2, η1) (if the equality holds then we are done). As x(λ1, µ1, η1) ∈
K (x(λ1, µ1, η1), λ1), x(λ1, µ2, η1) ∈ K (x(λ1, µ2, η1), λ1) and K (., .) is Hölder continu-
ous, there are x1 ∈ K (x(λ1, µ1, η1), λ1) and x2 ∈ K (x(λ1, µ2, η1), λ1) such that

d(x(λ1, µ1, η1), x2) ≤ l1dα1 (x(λ1, µ1, η1), x(λ1, µ2, η1)) , (4)

d(x(λ1, µ2, η1), x1) ≤ l1dα1 (x(λ1, µ1, η1), x(λ1, µ2, η1)) . (5)

Since x(λ2, µ2, η1) and x(λ2, µ2, η1) are solutions of (Pr1ϕ2 ), there exist x∗
1 ∈ a(x(λ1, µ1,

η1), η1) and x∗
2 ∈ a(x(λ1, µ2, η1), η1) such that

∃z1 ∈ F(x(λ1, µ1, η1), x1, x∗
1 , µ1) ∩ (Y\−intC), (6)

∃z2 ∈ F(x(λ1, µ2, η1), x2, x∗
2 , µ2) ∩ (Y\−intC). (7)

Assumption (A2r1ϕ2) implies that

inf
x∗∈a(x(λ1,µ1,η1),η1)

inf
g∈F(x(λ1,µ1,η1),x(λ1,µ2,η1),x∗,µ1)

d(g, Y\−intC)

+ inf
x∗∈a(x(λ1,µ2,η1),η1)

inf
f ∈F(x(λ1,µ2,η1),x(λ1,µ1,η1),x∗,µ1)

d( f, Y\− intC) ≥ hdβ
1 .
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By (6) and (7), we have

inf
g∈F(x(λ1,µ1,η1),x(λ1,µ2,η1),x∗

1 ,µ1)
d(g, z1) + inf

f ∈F(x(λ1,µ2,η1),x(λ1,µ1,η1),x∗
2 ,µ1)

d( f, z2) ≥ hdβ
1 .

Hence,

H
(
F(x(λ1, µ1, η1), x1, x∗

1 , µ1), F(x(λ1, µ1, η1), x(λ1, µ2, η1), x∗
1 , µ1)

)

+ H
(
F(x(λ1, µ2, η1), x2, x∗

2 , µ2), F(x(λ1, µ2, η1), x(λ1, µ1, η1), x∗
2 , µ1)

) ≥ hdβ
1 ,

where H(., .) is the Hausdorff distance. Consequently,

H
(
F(x(λ1, µ1, η1), x1, x∗

1 , µ1), F(x(λ1, µ1, η1), x(λ1, µ2, η1), x∗
1 , µ1)

)

+ H
(
F(x(λ1, µ2, η1), x2, x∗

2 , µ2), F(x(λ1, µ2, η1), x(λ1, µ1, η1), x∗
2 , µ2)

)

+ H
(
F(x(λ1, µ2, η1), x(λ1, µ1, η1), x∗

2 , µ2), F(x(λ1, µ2, η1), x(λ1, µ1, η1), x∗
2 , µ1)

)

≥ hdβ
1 .

By assumption (A1) and (ii), one has

n2dδ2(x1, x(λ1, µ2, η1)) + n2dδ2(x2, x(λ1, µ1, η1)) + n4dθ
1 dδ4(µ1, µ2) ≥ hdβ

1 .

Now (4) and (5) imply that

n2lδ2
1 dα1δ2

1 + n2lδ2
1 dα1δ2

1 + n4dθ
1 dδ4(µ1, µ2) ≥ hdβ

1 .

Then assumption (iv) yields that

dβ−θ
1 ≤

(
n4

h − 2n2lδ2
1

)

dδ4(µ1, µ2).

Setting k1 =
(

n4

h−2n2l
δ2
1

) 1
β−θ

, we have

d1 ≤ k1d
δ4

β−θ (µ1, µ2).

Step 2 Now we show that, ∀x(λ1, µ2, η1) ∈ Sr1ϕ2(λ1, µ2, η1),∀x(λ2, µ2, η1) ∈ Sr1ϕ2

(λ2, µ2, η1),

d2 := d(x(λ1, µ2, η1), x(λ2, µ2, η1)) ≤
(

2n2lδ2
2

h − 2n2lδ2
1

)1/β

dα2δ2/β(λ1, λ2).

As before we can assume that x(λ1, µ2, η1) �= x(λ2, µ2, η1). Thanks to (i) we have x ′
1 ∈

K (x(λ2, µ2, η1), λ1) and x ′
2 ∈ K (x(λ1, µ2, η1), λ2) such that

d(x(λ1, µ2, η1), x ′
2) ≤ l2dα2(λ1, λ2), (8)

d(x(λ2, µ2, η1), x ′
1) ≤ l2dα2(λ1, λ2). (9)

By the Hölder continuity of K (., .) there are x ′′
1 ∈ K (x(λ1, µ2, η1), λ1) and x ′′

2 ∈ K (x
(λ2, µ2, η1), λ2),

d(x ′
1, x ′′

1 ) ≤ l1dα1 (x(λ1, µ2, η1), x(λ2, µ2, η1)) , (10)

d(x ′
2, x ′′

2 ) ≤ l1dα1 (x(λ1, µ2, η1), x(λ2, µ2, η1)) . (11)
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By the definition of (Pr1ϕ2 ), x ′′∗
1 ∈ a(x(λ1, µ2, η1), η1) and x ′′∗

2 ∈ a(x(λ2, µ2, η1), η1) exist
such that one can find

z′
1 ∈ F(x(λ1, µ2, η1), x ′′

1 , x ′′∗
1 , µ2) ∩ (Y\−intC), (12)

z′
2 ∈ F(x(λ2, µ2, η1), x ′′

2 , x ′′∗
2 , µ2) ∩ (Y\−intC). (13)

It follows from assumption (A2r1ϕ2) that

inf
x∗∈a(x(λ1,µ2,η1),η1)

inf
g∈F(x(λ1,µ2,η1),x(λ2,µ2,η1),x∗,µ2)

d(g, Y\−intC)

+ inf
x∗∈a(x(λ2,µ2,η1),η1)

inf
f ∈F(x(λ2,µ2,η1),x(λ1,µ2,η1),x∗,µ2)

d( f, Y\−intC) ≥ hdβ
2 .

(12) and (13) then imply that

inf
g∈F(x(λ1,µ2,η1),x(λ2,µ2,η1),x ′′∗

1 ,µ2)
d(g, z′

1) + inf
f ∈F(x(λ2,µ2,η1),x(λ1,µ2,η1),x ′′∗

2 ,µ2)
d( f, z′

2) ≥ hdβ
2 .

Consequently,

H
(
F(x(λ1, µ2, η1), x ′′

1 , x ′′∗
1 , µ2), F(x(λ1, µ2, η1), x(λ2, µ2, η1), x ′′∗

1 , µ2)
)

+ H
(
F(x(λ2, µ2, η1), x ′′

2 , x ′′∗
2 , µ2), F(x(λ2, µ2, η1), x(λ1, µ2, η1), x ′′∗

2 , µ2)
) ≥ hdβ

2 .

and hence

H
(
F(x(λ1, µ2, η1), x ′′

1 , x ′′∗
1 , µ2), F(x(λ1, µ2, η1), x ′

1, x ′′∗
1 , µ2)

)

+ H
(
F(x(λ1, µ2, η1), x ′

1, x ′′∗
1 , µ2), F(x(λ1, µ2, η1), x(λ2, µ2, η1), x ′′∗

1 , µ2)
)

+ H
(
F(x(λ2, µ2, η1), x ′′

2 , x ′′∗
2 , µ2), F(x(λ2, µ2, η1), x ′

2, x ′′∗
2 , µ2)

)

+ H
(
F(x(λ2, µ2, η1), x ′

2, x ′′∗
2 , µ2), F(x(λ2, µ2, η1), x(λ1, µ2, η1), x ′′∗

2 , µ2)
)

≥ hdβ
2 .

The Hölder continuity of F assumed in (ii) implies that

n2dδ2(x ′′
1 , x ′

1) + n2dδ2(x ′
1, x(λ2, µ2, η1)) + n2dδ2(x ′′

2 , x ′
2)

+n2dδ2(x ′
2, x(λ1, µ2, η1)) ≥ hdβ

2 .

From (8), (9), (10) and (11) we have

n2lδ2
1 dα1δ2

2 + n2lδ2
2 dα2δ2(λ1, λ2) + n2lδ2

1 dα1δ2
2 + n2lδ2

2 dα2δ2(λ1, λ2) ≥ hdβ
2 .

It follows from assumption (iv) that

dβ
2 ≤

(
2n2lδ2

2

h − 2n2lδ2
1

)

dα2δ2(λ1, λ2).

Taking k2 =
(

2n2l
δ2
2

h−2n2l
δ2
1

) 1
β

, one has

d2 ≤ k2d
α2δ2

β (λ1, λ2).
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Step 3 We check the inequality, ∀x(λ2, µ2, η1) ∈ Sr1ϕ2(λ2, µ2, η1), ∀x(λ2, µ2, η2)

∈ Sr1ϕ2(λ2, µ2, η2),

d3 := d(x(λ2, µ2, η1), x(λ2, µ2, η2)) ≤
(

n3mδ3

h − 2n2lδ2
1

) 1
β−θ

d
γ δ3
β−θ (η1, η2).

Assume that x(λ2, µ2, η1) �= x(λ2, µ2, η2). It follows from (i) the existence of x ′′′
1∈ K (x(λ2, µ2, η1), λ2) and x ′′′

2 ∈ K (x(λ2, µ2, η2), λ2) such that

d(x(λ2, µ2, η1), x ′′′
2 ) ≤ l1dα1

3 , (14)

d(x(λ2, µ2, η2), x ′′′
1 ) ≤ l1dα1

3 . (15)

Since x(λ2, µ2, η1) and x(λ2, µ2, η2) are solutions of (Pr1ϕ2 ), there exist x ′′′∗
1 ∈ a(x(λ2, µ2,

η1), η1) and x ′′′∗
2 ∈ a(x(λ2, µ2, η2), η2) such that we have

z′′
1 ∈ F(x(λ2, µ2, η1), x ′′′

1 , x ′′′∗
1 , µ2) ∩ (Y\−intC), (16)

z′′
2 ∈ F(x(λ2, µ2, η2), x ′′′

2 , x ′′′∗
2 , µ2) ∩ (Y\−intC). (17)

Assumption (A2r1ϕ2) implies that

inf
x∗∈a(x(λ2,µ2,η1),η1)

inf
g∈F(x(λ2,µ2,η1),x(λ2,µ2,η2),x∗,µ2)

d(g, Y\− intC)

+ inf
x∗∈a(x(λ2,µ2,η2),η1)

inf
f ∈F(x(λ2,µ2,η2),x(λ2,µ2,η1),x∗,µ2)

d( f, Y\− intC) ≥ hdβ
3 . (18)

Since x ′′′∗
2 ∈ a(x(λ2, µ2, η2), η2), by (iii) there exists x∗

1 ∈ a(x(λ2, µ2, η2), η1) such that

d(x ′′′∗
2 , x∗

1 ) ≤ mdγ (η1, η2). (19)

It follows from (18) that

inf
g∈F(x(λ2,µ2,η1),x(λ2,µ2,η2),x ′′′∗

1 ,µ2)
d(g, Y\−intC)

+ inf
f ∈F(x(λ2,µ2,η2),x(λ2,µ2,η1),x∗

1 ,µ2)
d( f, Y\−intC) ≥ hdβ

3 .

From (16) and (17) one has

inf
g∈F(x(λ2,µ2,η1),x(λ2,µ2,η2),x ′′′∗

1 ,µ2)
d(g, z′′

1)+ inf
f ∈F(x(λ2,µ2,η2),x(λ2,µ2,η1),x∗

1 ,µ2)
d( f, z′′

2)≥hdβ
3 .

Hence

H
(
F(x(λ2, µ2, η1), x ′′′

1 , x ′′′∗
1 , µ2), F(x(λ2, µ2, η1), x(λ2, µ2, η2), x ′′′∗

1 , µ2)
)

+ H
(
F(x(λ2, µ2, η2), x ′′′

2 , x ′′′∗
2 , µ2), F(x(λ2, µ2, η2), x(λ2, µ2, η1), x∗

1 , µ2)
) ≥ hdβ

3 ,

and then

H
(
F(x(λ2, µ2, η1), x ′′′

1 , x ′′′∗
1 , µ2), F(x(λ2, µ2, η1), x(λ2, µ2, η2), x ′′′∗

1 , µ2)
)

+ H
(
F(x(λ2, µ2, η2), x ′′′

2 , x ′′′∗
2 , µ2), F(x(λ2, µ2, η2), x(λ2, µ2, η1), x ′′′∗

2 , µ2)
)

+ H
(
F(x(λ2, µ2, η2), x(λ2, µ2, η1), x ′′′∗

2 , µ2), F(x(λ2, µ2, η2), x(λ2, µ2, η1), x∗
1 , µ2)

)

≥ hdβ
3 .
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Assumptions (A1) and (ii) together imply that

n2dδ2(x ′′′
1 , x(λ2, µ2, η2)) + n2dδ2(x ′′′

2 , x(λ2, µ2, η1)) + n3dθ
3 dδ3(x ′′′∗

2 , x∗
1 ) ≥ hdβ

3 .

From (14), (15) and (19), we obtain

n2lδ2
1 dα1δ2

3 + n2lδ2
1 dα1δ2

3 + n3mδ3 dθ
3 dγ δ3(η1, η2) ≥ hdβ

3 .

Assumption (iv) now yields that

dβ−θ
3 ≤

(
n3mδ3

h − 2n2lδ2
1

)

dγ δ3(η1, η2).

Setting k3 =
(

n3mδ3

h−2n2l
δ2
1

) 1
β−θ

, we have

d3 ≤ k3d
γ δ3
β−θ (µ1, µ2).

Step 4 Finally since, ∀x(λ1, µ1, η1)∈ Sr1ϕ2(λ1, µ1, η1), ∀x(λ2, µ2, η2)∈ Sr1ϕ2(λ2,

µ2, η2)

d(x(λ1, µ1, η1), x(λ2, µ2, η2)) ≤ d1 + d2 + d3,

we have

ρ
(
Sr1ϕ2(λ1, µ1, η1), Sr1ϕ2(λ2, µ2, η2)

) ≤ d1 + d2 + d3.

Putting (λ1, µ1, η1) = (λ2, µ2, η2) from this inequality one sees that Sr1ϕ2(λ1, µ1, η1) is a
singleton. Similarly, Sr1ϕ2(λ2, µ2, η2) is also a singleton. Thus (Pr1ϕ2) has a unique solution
in a neighborhood of (λ0, µ0, η0) and then the Hölder condition concluded in the theorem is
obtained. ��

Remark 2.1 In the case of equilibrium problems considered in Anh and Khanh (2007a),
generalized monotonicity assumptions corresponding to (A2rϕ) ensure directly the solution
uniqueness. However, for quasiequilibrium problems the above proof shows that this unique-
ness is obtained by invoking all the assumptions together.

Examples 2.1 in Anh and Khanh (2007a) shows that assumptions (A2rϕ) are essential
even in the special case where K depends only on λ.

Now we discuss some consequences of Theorem 2.1 for this special case, i.e. problems
(Prϕ) becomes the corresponding equilibrium problem denoted by (Erϕ). When r = r1, ϕ =
ϕ2 and r = r2, ϕ = ϕ2, Theorem 2.1 becomes Theorems 2.1 and 2.2, respectively, of Anh
and Khanh (2007a) and sharpens Theorems 2.1 and 2.2, respectively, of Anh and Khanh
(2006). To see this sharpening see Examples 2.4–2.6 in Anh and Khanh (2007a). Note that
the cases where r = r1, ϕ = ϕ1 or r = r2, ϕ = ϕ1 are new even for the special case of (Erϕ).
In addition, if a(x, η) ≡ {x} and F(x, y, x∗, µ) = F(x, y, µ) is single-valued, the special
case of Theorem 2.1 improves Theorem 4.2 of Bianchi and Pini (2003) and Theorem 2.2.1
of Ait Mansour and Riahi (2005) (see also Examples 2.4–2.8 of Anh and Khanh (2007a) for
detailed comparisons).
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3 Applications

We will now apply the main result in Sect. 2 to some problems of importance. Since quasi-
equilibrium problems include also many other problems, our result can clearly imply conse-
quences for them.

3.1 Multivalued quasivariational inequalities

In this subsection, if not stated otherwise, let X be a reflexive Banach space, N and Λ

be metric linear spaces, and A ⊆ X be a nonempty subset. Let K : A × Λ → 2X and
a: A× N → 2X∗

be multifunctions with K (x, λ) being closed and convex, ∀(x, λ) ∈ A×Λ.
For each (λ, η) ∈ Λ × N consider the quasivariational inequality problem
(QVI) Find x̄ ∈ K (x̄, λ) such that ∃t̄ ∈ a(x̄, η), ∀y ∈ K (x̄, λ),

〈t̄, y − x̄〉 ≥ 0.

For each (λ, η) ∈ Λ × N , by Svi(λ, η) we denote the solution set of (QVI) at (λ, η).
To convert (QVI) to a special case of (Prϕ) set Z = X∗, Y = R, C = R+ and F(x, y, x∗)

= 〈x∗, y − x〉.
Corollary 3.1 For (QVI) assume the solution existence in a neighborhood of (λ0, η0) ∈
Λ × N. Assume further that there are neighborhoods U (λ0) of λ0, W (η0) of η0 such that we
have (i), (iii) of Theorem 2.1 and

(A2) ∀η ∈ W (η0),∀x, y ∈ E(U (λ0)) : x �= y,

h‖x − y‖β ≤ inf
g∈〈a(x,η),y−x〉 d(g, R+) + inf

f ∈〈a(y,η),x−y〉 d( f, R+);

(a) a is bounded in E(U (λ0)) × {η0} : ‖a(x, η)‖ ≤ n2,∀x ∈ E(U (λ0)),∀η ∈ W (η0) and
E(U (λ0)) is bounded;

(b) α1 = β, h > 2n2l1.

Then the solution x(λ, η) of (QVI) is unique in a neighborhood of (λ0, η0) and satisfies the
Hölder condition

‖x(λ1, η1) − x(λ2, η2)‖ ≤ k1dα2/β(λ1, λ2) + k2dγ /β(µ1, µ2).

Proof We simply check the assumptions of Theorem 2.1, except (i) and (iii). (A2rϕ) collapses
to (A2) in this special case. For (A1) we see that

|F(x, y, x∗
1 ) − F(x, y, x∗

2 )| = |〈x∗
1 , y − x〉 − 〈x∗

2 , y − x〉|
≤ ‖y − x‖‖x∗

1 − x∗
2‖ ≤ n1‖x∗

1 − x∗
2‖.

Hence (A1) is fulfilled with n3 = n1, δ3 = 1 and θ = n4 = δ4 = 0. Since ‖a(x, η)‖ ≤ n2

in E(U (λ0)) × W (η0), assumption (ii) is satisfied with n2 and δ2 = 1. Assumption (iv)
becomes (b) in this case. ��
Remark 3.1 Let x̄ = x(λ̄, µ̄) be the solution of the variational inequality (VI) corresponding
to (QVI), i.e. when K does not depend on x . Using similar arguments, Corollary 3.1 can
be proved when replacing assumption (i) by the following Aubin property (known also as
pseudo-Lipschitz property) of K around (x̄, λ̄) (but we have to add the maximal monotonicity
of a(., η)): there exist neighborhoods P of x̄ , V(λ̄) of λ̄ and k > 0 such that, ∀λ1, λ2 ∈ V(λ̄),

K (λ1) ∩ P ⊆ K (λ2) + l B (0, d(λ1, λ2)) .
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Indeed, by classical arguments of existence theory for variational inequalities (cf. Anh and
Khanh (2007a), we can consider that the solution x(λ, η) to (VI) belongs to K (λ̄) ∩ P . Note
that in this case l1 = 0 and α1 is arbitrary so we take α1 = β and hence α1.δ2 = β > 1.
Furthermore, in this case assumption (a) of Corollary 3.1 requires only a to be bounded
in E(U (λ0)) × {η0} (E(U (λ0)) needs not to be bounded) and hence assumption (A1) will
be satisfied with n3 = δ3 = θ = 1 and n4 = δ4 = 0. Namely we have the following
consequence.

Corollary 3.2 For (VI) assume the existence a neighborhood U (λ0) × W (η0) of (λ0, η0) ∈
Λ× N such that assumptions (iii) and (A2) of Corollary 3.1 are satisfied and assume further
that

(i′) there is a neighborhood P of the solution x(λ0, η0) such that, ∀λ, λ′ ∈ U (λ0),

K (λ) ∩ P ⊆ K (λ′) + l B
(
0, dα(λ, λ′)

)

(i.e. K (.) is l.α−pseudo-Hölder at λ0);
(a′) a is bounded in K (U (λ0)) × {η0} and ∀η ∈ W (η0), a(., η) is maximal monotone;
(b′) β > 1.

Then, in a neighborhood of (λ0, η0), the solution x(λ, η) of (VI) is unique and satisfies the
Hölder condition

‖x(λ1, η1) − x(λ2, η2)‖ ≤ k1dα/β(λ1, λ2) + k2dξ/(β−1)(η1, η2).

In the case where a is single—valued, Corollary 3.2 implies the following result

Corollary 3.3 For (VI) assume that a is single—valued, x0 := x(λ0, η0) is a solution of
(VI) at (λ0, η0) and that there is a neighborhood U (λ0) × W (η0) of (λ0, η0) such that

(A2′) a(., η) is strongly monotone for each η ∈ W (η0);
(i′) K (.) is pseudo-Lipschitz in U (λ0);
(iii′) a(., .) is Lipschitz in P(x0) × W (η0).

Then, in a neighborhood of (λ0, η0), the unique solution of (VI) satisfies the Hölder condition

‖x(λ1, η1) − x(λ2, η2)‖ ≤ k1d1/2(λ1, λ2) + k2d(η1, η2).

Proof We check the assumptions of Corollary 3.1. (i′) holds with α = 1. (A2) is satisfied
with β = 2 by (A2′). (iii) is fulfilled with γ = 1 by (iii′). For (a′) we see that a is bounded
since a(., .) is Lipschitz continuous and a(., η) is monotone; furthermore, since a(., .) is
single-valued and a(., η) is monotone and demicontinuous, a(., η) is maximal monotone by
Lemma 2.13 of Kluge (1979). Finally, assumption (b′) is clearly satisfied. ��

If X is a Hilbert space Corollary 3.3 collapses to Theorem 2.1 of Yen (1995).

Remark 3.2 As shown by Proposition 1.1, if a is single-valued, assumption (A2) is more
relaxed than the h.β-Hölder-strong monotonicity of a(., η) in E(U (λ0)), ∀η ∈ W (λ0). When
a is single-valued and K (x, λ) is of a special linear form defined by the travel demands in
a traffic network problem (see Subsect. 3.2), our problem (QVI) is reduced to the problem
investigated in Ait Mansour and Scrimali (online). Theorem 2, the main result there, under
assumptions similar to that of Corollary 3.1 with the mentioned monotonicity of a(., η)

replacing (A2), is weaker than Corollary 3.1 when β = 2.
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3.2 A vector quasioptimization problem

Let X, Y,Λ, N , C and K be as for problem (Prϕ) in Sect. 1 and D: X × N → 2Y be a multi-
function. For each (λ, η) ∈ Λ × N , consider the following problem of
(VOPϕ) finding x̄ ∈ K (x̄, λ) and x̄∗ ∈ D(x̄, η) such that, ∀y ∈ K (x̄, λ),

D(y, η) − x̄∗ ⊆ ϕ(C).

Recall that when K does not depend on x and ϕ = ϕ2 such a point x̄ is said to be a weak
minimizer and x̄∗ is a weak minimum of the vector optimization problem

min D(y, η), s.t. y ∈ K (λ),

and when K does not depend on x and ϕ = ϕ1 such a point x̄ is called an efficient minimizer
and x̄∗ is a Pareto minimum, i.e., there is no y ∈ D(x̄, η) such that

y − x∗ ∈ (−C)\l(C),

where l(C) = C ∩ (−C). Since the constraint set K here depends also on x , we have a
quasioptimization problem.

To convert (VOPϕ) to a special case of (Pr2ϕ) we simply set Z = Y, M ≡ N and
F(x, y, x∗, η) = D(y, η) − x∗. Then, from Theorem 2.1 we have (cf. also the proof of
Theorem 2.1).

Corollary 3.4 For (VOPϕ) assume that solutions exist in a neighborhood of (λ0, η0) ∈
Λ× N. Assume further that there are neighborhoods U (λ0) of λ0 and W (η0) of η0 such that

(A1) ∀λ ∈ U (λ0),∀η1, η2 ∈ W (η0),∀y ∈ E(λ), ∀x∗
1 , x∗

2 ∈ D (E(λ), W (η0)),

D(y, η1) − x∗
1 ⊆ D(y, η2) − x∗

2 + ‖y‖θ B
(
0, n3‖x∗

1 − x∗
2‖ + n4dδ4(η1, η2)

)
,

where n3, n4 > 0, θ ≥ 0 and δ4 > 0;
(A2ϕ) ∀η ∈ W (η0),∀x, y ∈ E(U (λ0)) : x �= y,

hdβ(x, y) ≤ inf
x∗∈D(x,η)

sup
g∈D(y,η)−x∗

d(g, ϕ(C)) + inf
y∗∈D(y,η)

sup
f ∈D(x,η)−y∗

d( f, ϕ(C)),

for h > 0 and β > θ;
(i) K (., .) is (l1.α1, l2.α2)−Hölder at λ0;

(ii) ∀η ∈ W (η0), D(., η) is n2.δ2− Hölder in E(U (λ0));
(iii) ∀λ ∈ U (λ0),∀y ∈ E(λ), D(y, .) is m.γ− Hölder at η0.

Then, in a neighborhood of (λ0, η0), the solution x(λ, η) of (VOPϕ), is unique and satisfies
the following condition

d(x(λ1, η1), x(λ2, η2)) ≤ k1dα2δ2/β(λ1, λ2) + k2dτ/(β−θ)(η1, η2),

where τ : = min{δ4, γ }, k1 and k2 are positive constants depending on h, β, m, θ, . . .

3.3 Applications to traffic network problems

Wardrop (1952) introduced a notion of equilibrium flows for transportation network problems
and proved basic traffic network principles. Until now many contributions have developed
this research direction in various aspects. We would notice some points in the development
process. Smith (1979) began the variational approach by proving that the Wardrop equilibria
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are just solutions of variational inequalities corresponding to the traffic network problems.
In De Luca (1995) and Maugeri (1995) the travel demands of the problem was proposed
to depend on the equilibrium vector flows to meet the variety of practical situations. These
elastic demands led to the fact that the traffic problem corresponded to a quasivariational
(not variational) inequality. De Luca (1995) and Maugeri (1995) considered the travel costs
being multifunctions of the path flows. Khanh and Luu (2004, 2005) extended the notion
of Wardrop’s traffic equilibria to this case. Efforts have been devoted mainly to the solu-
tion existence. Recently, in Ait Mansour and Scrimali (online), the stability of the problem
in terms of the Hölder continuity of the solution with respect to the perturbing parameters
is studied. In this subsection we apply the results in Sect. 2 to establish sharpened Hölder
continuity results for more general traffic network problems with multivalued costs.

We describe first our traffic problem. Let the network consist of nodes and links (or arcs).
Let W = (W1, . . . , Wl) be the set of pairs, each of them consists of an origin node and a
destination node, (O/D pairs for short). Assume that Pj , j = 1, . . . , l, is the set of paths
connecting the pair W j and that Pj contains r j ≥ 1 paths. Let m = r1 + · · · + rl and
f = ( f1, . . . , fm) denote the path vector flow. Giannessi (1980) proposed that restrictions
of the capacity of the paths must be considered. Hence we assume that the constraint of the
capacity of paths is of the form

A = { f ∈ Rm : γs ≤ fs ≤ �s, s = 1, . . . , m},
whereγs and�s are given nonnegative numbers. Let the cost vector T ( f, µ) = (T1( f, µ), . . . ,

Tm( f, µ)) be a multifunction of flow f and perturbing parameter µ. The generalization of
the Wardrop equilibrium for the multivalued cost case is as follows.

Definition 3.1 (i) A path vector flow f is said to be a weak equilibrium vector flow if
∀W j ,∀q ∈ Pj ,∀s ∈ Pj , ∃t ∈ T ( f, µ),

tq < ts �⇒ fq = �q or fs = γs,

where j = 1, . . . , l and q, s ∈ {1, . . . , m} are among r j paths corresponding to Pj .

(ii) A path vector flow f is called a strong equilibrium vector flow if (i) is satisfied with
∃t ∈ T ( f, µ) being replaced by ∀t ∈ T ( f, µ).

Assume further that the travel demand g j of the O/D pair W j depends on the equilibrium
vector flow h as explained in De Luca (1995) and Maugeri (1995) and also on a perturbing
parameter λ ∈ Λ: g j (h, λ). Denote the travel vector demand by g = (g1, . . . , gl) and use
the Kronecker numbers

φ js =
{

1, if s ∈ Pj ,

0, if s /∈ Pj ,

φ = {φ js}, j = 1, . . . , l; s = 1, . . . , m.

Then the set of all feasible path vector flows is

K (h, λ) = { f ∈ A | φz = g(h, λ)},
where φ is called the O/D pair–path incidence matrix.

Note that the traffic problem formulated in terms of path flow variables as above needs not
the additivity of the travel cost, i.e. a path cost may not be equal to the sum of the link costs
for all links involved in the path. For formulations based on link variables such additivity
must be assumed.
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Observe that a feasible path flow vector f̄ is a weak (or strong) equilibrium flow vector
if f̄ is a solution of the following quasivariational inequality, respectively, (see Khanh and
Luu 2004):
(TNPr1) Find f̄ ∈ K ( f̄ , λ) such that, ∀ f ∈ K ( f̄ , λ), ∃t̄ ∈ T ( f̄ , µ),

〈t̄, f − f̄ 〉 ≥ 0.

(TNPr2) Find f̄ ∈ K ( f̄ , λ) such that ∀ f ∈ K ( f̄ , λ), ∀t̄ ∈ T ( f̄ , µ) such that

〈t̄, f − f̄ 〉 ≥ 0.

Lemma 3.5 (Proposition 1, Ait Mansour and Scrimali (online)) If g(., .) is (L1.α1, L2.α2)-
Hölder at (x0, λ0) then there are l1, l2 such that K is (l1.α1, l2.α2)-Hölder at (x0, λ0).

Setting X = Z = Rm, N ≡ Λ, Y = R, C = R+, a(x, λ) = Z and F(h, f, h∗, µ) =
〈T (h, µ), f −h〉. Then our problems (Prϕ1) coincides with (Prα2); (Pr1ϕ) and (Pr2ϕ) becomes
(TNPr1) and (TNPr2), respectively. Hence we can derive the Hölder continuity of (TNPr1)

and (TNPr2) from Theorem 2.1 as follows.
First note that, since in this case F(h, f, h∗, µ) does not depend on h∗ and the problem is

scalar (hence ϕ1 = ϕ2), assumptions (Ar1ϕ) and (Ar2ϕ) collapse to the following assumptions,
respectively,

(Ar1) ∀µ ∈ V (µ0), ∀x, y ∈ E(U (λ0)) : x �= y,

h‖x − y‖β ≤ inf
g∈〈T (x,µ),y−x〉 d(g, R+) + inf

f ∈〈T (y,µ),x−y〉 d( f, R+).

(Ar2) ∀µ ∈ V (µ0), ∀x, y ∈ E(U (λ0)) : x �= y,

h‖x − y‖β ≤ sup
g∈〈T (x,µ),y−x〉

d(g, R+) + sup
f ∈〈T (y,µ),x−y〉

d( f, R+).

Corollary 3.6 For (TNPr) assume that there are neighborhoods U (λ0) of λ0 and V (µ0) of
µ0 such that assumption (Ar) is satisfied. Assume further that

(a) ∀ f ∈ E(U (λ0)), T ( f, .) is n.δ-Hölder at µ0 and T (., .) is bounded: ∀ f ∈ E (U (λ0)) ,

∀µ ∈ V (µ0),∀t ∈ T ( f, µ), ‖t‖ ≤ M; and E (U (λ0)) is bounded: ∀ f ∈ E(U (λ0)),
‖ f ‖ ≤ N ;

(b) g is (L1.α1, L2.α2)-Hölder in E (U (λ0)) × {λ0};
(c) α1 = β and h > 2n2l1.

Then, in a neighborhood of (λ0, µ0), the solution of (TNPr) is unique and satisfies the
following Hölder condition

d( f (λ1, µ1), f (λ2, µ2)) ≤ k1dα2/β(λ1, λ2) + k2dδ/β(µ1, µ2),

where k1 and k2 are positive constants depending on h, β, n, δ, etc.

Proof Taking into account Lemma 3.5, it suffices to check only assumptions (ii) and (A1) of
Theorem 2.1 (assumption (iii) is satisfied with any m ≥ 0, γ ≥ 0). For any F1 = 〈t, f1 − h〉
we take F2 = 〈t, f2 − h〉. Then

‖F1 − F2‖ ≤ 〈t, f1 − f2〉 ≤ M‖ f1 − f2‖.
Hence

〈T (h, µ), f1 − h〉 ⊆ 〈T (h, µ), f2 − h〉 + M‖ f1 − f2‖B(0, 1),
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i.e. assumption (ii) is fulfilled with n2 = M and δ2 = 1. Similarly, it is not hard to see that
(A1) is satisfied with θ = 0, n4 = nN , δ4 = δ, n3 = 0 and δ3 is any nonnegative numbers.

��

Remark 3.3 In Ait Mansour and Scrimali (online) the special case of our traffic network
problem, where T is single-valued, is investigated. Instead of (Ar) a strong monotonicity of
T (which is stricter than (Ar)) is assumed.
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